Cooperative regulation of light-harvesting complex II phosphorylation via the plastoquinol and ferredoxin-thioredoxin system in chloroplasts.
نویسندگان
چکیده
Light induces phosphorylation of photosystem II (PSII) proteins in chloroplasts by activating the protein kinase(s) via reduction of plastoquinone and the cytochrome b(6)f complex. The recent finding of high-light-induced inactivation of the phosphorylation of chlorophyll a/b-binding proteins (LHCII) of the PSII antenna in floated leaf discs, but not in vitro, disclosed a second regulatory mechanism for LHCII phosphorylation. Here we show that this regulation of LHCII phosphorylation is likely to be mediated by the chloroplast ferredoxin-thioredoxin system. We present a cooperative model for the function of the two regulation mechanisms that determine the phosphorylation level of the LHCII proteins in vivo, based on the following results: (i) Chloroplast thioredoxins f and m efficiently inhibit LHCII phosphorylation. (ii) A disulfide bond in the LHCII kinase, rather than in its substrate, may be a target component regulated by thioredoxin. (iii) The target disulfide bond in inactive LHCII kinase from dark-adapted leaves is exposed and easily reduced by external thiol mediators, whereas in the activated LHCII kinase the regulatory disulfide bond is hidden. This finding suggests that the activation of the kinase induces a conformational change in the enzyme. The active state of LHCII kinase prevails in chloroplasts under low-light conditions, inducing maximal phosphorylation of LHCII proteins in vivo. (iv) Upon high-light illumination of leaves, the target disulfide bond becomes exposed and thus is made available for reduction by thioredoxin, resulting in a stable inactivation of LHCII kinase.
منابع مشابه
Dithiol oxidant and disulfide reductant dynamically regulate the phosphorylation of light-harvesting complex II proteins in thylakoid membranes.
Light-induced phosphorylation of light-harvesting chlorophyll a/b complex II (LHCII) proteins in plant thylakoid membranes requires an activation of the LHCII kinase via binding of plastoquinol to cytochrome b(6)f complex. However, a gradual down-regulation of LHCII protein phosphorylation occurs in higher plant leaves in vivo with increasing light intensity. This inhibition is likely to be med...
متن کاملThylakoid Protein Phosphorylation during State 1-state 2 Transitions in Osmotically Shocked Pea Chloroplasts
In osmotically shocked pea chloroplasts illuminated with modulated blue-green light 0ight 2), phosphorylation of the light-harvesting chlorophyll a/b-protein complex (LHCP) accompanies the slow decrease in modulated fluorescence that indicates adaptation to light absorbed predominantly by Photosystem II (State 2). On subsequent additional illumination with continuous far-red light (absorbed pre...
متن کاملRegulation of thylakoid protein phosphorylation at the substrate level: reversible light-induced conformational changes expose the phosphorylation site of the light-harvesting complex II.
Light-dependent activation of thylakoid protein phosphorylation regulates the energy distribution between photosystems I and II of oxygen-evolving photosynthetic eukaryotes as well as the turnover of photosystem II proteins. So far the only known effect of light on the phosphorylation process is the redox-dependent regulation of the membrane-bound protein kinase(s) activity via plastoquinol bou...
متن کاملChloroplast thioredoxin systems: prospects for improving photosynthesis
Thioredoxins (TRXs) are protein oxidoreductases that control the structure and function of cellular proteins by cleavage of a disulphide bond between the side chains of two cysteine residues. Oxidized thioredoxins are reactivated by thioredoxin reductases (TR) and a TR-dependent reduction of TRXs is called a thioredoxin system. Thiol-based redox regulation is an especially important mechanism t...
متن کاملAnalysis of the Chloroplast Protein Kinase Stt7 during State Transitions
State transitions allow for the balancing of the light excitation energy between photosystem I and photosystem II and for optimal photosynthetic activity when photosynthetic organisms are subjected to changing light conditions. This process is regulated by the redox state of the plastoquinone pool through the Stt7/STN7 protein kinase required for phosphorylation of the light-harvesting complex ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Proceedings of the National Academy of Sciences of the United States of America
دوره 97 21 شماره
صفحات -
تاریخ انتشار 2000